Math, asked by sevynsavi, 4 days ago

Prove Sin^2 72° - Sin^2 36° =√5/4

Answers

Answered by amrinjavedshaikh1987
0

Here, we will use,

sin 18^@ = (sqrt5-1)/4

<br>

sin^2(72^@) -sin^2(60^@)

<br>

=sin^2(90^@ -18^@) - sin^2(60^@)

<br>

=cos^2 (18^@)- sin^2(60^@)

<br>

=1-sin^2(18^@)- sin^2(60^@)

<br> Putting values of

sin 18^@ and sin 60^@

<br>

=1-( (sqrt5-1)/4)^2 -(sqrt3/2)^2

<br>

=1-((6-2sqrt5)/16)-3/4

<br>

=(16-6+2sqrt5-12)/16

<br>

=(2sqrt5-2)/16

<br>

:. sin^2(72^@) -sin^2(60^@) =(sqrt5-1)/8

<br>

Similar questions