Math, asked by Shashrocks, 1 year ago

prove sin 47 + cos 77 = cos 17

Answers

Answered by neerajvermag11
38
I hope this answer help you
Attachments:
Answered by pinquancaro
6

Answer and Explanation:

To prove : \sin 47+\cos 77=\cos 17

Solution :

Taking LHS,

\sin 47+\cos 77

=\sin (90-43)+\cos 77

We know, \sin(90-\theta)=\cos \theta

=\cos 43+\cos 77

Apply trigonometry formula,

\cos A+\cos B=2\cos (\frac{A+B}{2})\cos (\frac{A-B}{2})

=2\cos (\frac{43+77}{2})\cos (\frac{43-77}{2})

=2\cos (\frac{120}{2})\cos (\frac{-34}{2})

=2\cos (60)\cos (-17)

Applying, \cos (60)=\frac{1}{2},\ \ \cos(-\theta)=\cos \theta

=2\times \frac{1}{2}\cos (17)

=\cos (17)

=RHS

LHS=RHS hence proved.

Similar questions