Math, asked by EktaRai, 9 months ago

Prove sin(5 pi/6+x)+sin(5pi/6-x)=cos x.​

Answers

Answered by MaheswariS
4

\underline{\textsf{To prove:}}

\mathsf{sin\left(\dfrac{5\pi}{6}+x\right)+sin\left(\dfrac{5\pi}{6}-x\right)=cosx}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{sin\left(\dfrac{5\pi}{6}+x\right)+sin\left(\dfrac{5\pi}{6}-x\right)}

\mathsf{Using}

\boxed{\mathsf{sin(A+B)+sin(A-B)=2\,sinA\,cosB}}

\mathsf{=2\,sin\dfrac{5\pi}{6}\,cosx}

\mathsf{=2\,sin\left(\pi-\dfrac{\pi}{6}\right)\,cosx}

\mathsf{=2\,sin\dfrac{\pi}{6}\,cosx}

\mathsf{=2\left(\dfrac{1}{2}\right)\,cosx}

\mathsf{=cosx}

\therefore\boxed{\mathsf{sin\left(\dfrac{5\pi}{6}+x\right)+sin\left(\dfrac{5\pi}{6}-x\right)=cosx}}

\underline{\textsf{Find more:}}

Prove (Cosx+cosy)^2 + (sinx-siny)^2=4cos^2(x+y/2)

https://brainly.in/question/2569880

Cos6x = 32cos6x-48cos4x+18cos2x-1

https://brainly.in/question/877278

Similar questions