prove: sin(5a-a)/sinacosa=4cos2a
Answers
Answer:
To prove: \dfrac{\sin 5A}{\sin A}- \dfrac{cos 5A}{\cos A} = 4 \cos 2A
sinA
sin5A
−
cosA
cos5A
=4cos2A
Step-by-step explanation:
Consider L.H.S.
We have
\begin{gathered}\dfrac{\sin 5A}{\sin A}- \dfrac{\cos 5A}{\cos A} \\\\= \dfrac{\sin 5A \cos A-\cos 5A \sin A}{\sin A \cos A}\end{gathered}
sinA
sin5A
−
cosA
cos5A
=
sinAcosA
sin5AcosA−cos5AsinA
Now as we know \sin(x-y)= \sin x \cos y -\cos x \sin ysin(x−y)=sinxcosy−cosxsiny
Therefore we get
\begin{gathered}=\dfrac{\sin (5A-A)}{\cos A \sin A} \\\\=\dfrac{\sin 4A}{\cos A \sin A} \\\\ \text {Now } \because \sin 2A = 2 \sin A \cos A \text { we get }\\\\ =\dfrac{2\sin 2A \cos 2A}{\cos A \sin A} \\\\= \dfrac{2 \times 2 \sin A \cos A\cos 2A}{\cos A \sin A} =4 \cos A\end{gathered}
=
cosAsinA
sin(5A−A)
=
cosAsinA
sin4A
Now ∵sin2A=2sinAcosA we get
=
cosAsinA
2sin2Acos2A
=
cosAsinA
2×2sinAcosAcos2A
=4cosA
which is equal to R.H.S.
Hence, proved the required result that \dfrac{\sin 5A}{\sin A}- \dfrac{cos 5A}{\cos A} = 4 \cos 2A
sinA
sin5A
−
cosA
cos5A
=4cos2A