Math, asked by ayushijaychandra, 8 months ago

prove :
(Sin 5A COS 2A - sin 6A COS A)/
(sin A sin 2 A- cos 2 A Cos 3 A​)
= tan A

Answers

Answered by Anonymous
0

Answer:

\frac{sin 5A cos 2A -sin 6A cos A}{sin A sin 2A-cos 2A cos 3A} = tan A

Step-by-step explanation:

LHS: \frac{sin 5A cos 2A -sin 6A cos A}{sin A sin 2A-cos 2A cos 3A}

Multiplying '2' to the numerator and denominator:

\frac{2(sin 5A cos 2A -sin 6A cos A)}{2(sin A sin 2A-cos 2A cos 3A)}

\frac{2sin 5A cos 2A -2sin 6A cos A}{2sin A sin 2A- 2cos 2A cos 3A}            

=\frac{sin 7A + sin 3A - sin7A - sin 5A}{cos A - cos 3A -cos 5A - cos A}  \left[\begin{array}{ccc}2sin A cos B = sin(A+B) + sin(A-B)\\{2sin A sin B =cos(A-B) -cos(A+B)}\\{2cos A cos B =cos(A+B) +cos(A-B)}\end{array}\right] =\frac{sin 3A  - sin 5A}{- cos 3A -cos 5A }

Multiplying -ve sign to the numerator and denominator:

=\frac{sin 5A  - sin 3A}{ cos 3A + cos 5A }                            \left[\begin{array}{ccc}sin A - sin B =2cos(\frac{A+B}{2}) sin(\frac{A-B}{2}  ) \\cos A + cos B =2 cos(\frac{A+B}{2} )cos (\frac{A-B}{2} )\\\end{array}\right]

=  \frac{2cos(\frac{5A+3A}{2}) sin(\frac{5A - 3A}{2})  } {2cos(\frac{5A+3A}{2} ) cos(\frac{5A-3A}{2}) }              

= \frac{2cos( 4A)sin(A) }{2cos(4A)cos(A)}

= tan A

=RHS

∴ Hence proved

                           

Similar questions