prove ;
sin(90°-Ã) = cosÃ
Answers
Answered by
2
sin (90° + θ) = cos θ
cos (90° + θ) = OFOEOFOE
cos (90° + θ) = −DCOC−DCOC, [OF = -DC and OE = OC, since ∆ OCD ≅ ∆ OEF]
cos (90° + θ) = - sin θ.
tan (90° + θ) = FEOFFEOF
tan (90° + θ) = OD−DCOD−DC, [FE = OD and OF = - DC, since ∆ OCD ≅ ∆ OEF]
tan (90° + θ) = - cot θ.
Similarly, csc (90° + θ) = 1sin(90°+Θ)1sin(90°+Θ)
csc (90° + θ) = 1cosΘ1cosΘ
csc (90° + θ) = sec θ.
sec (90° + θ) = 1cos(90°+Θ)1cos(90°+Θ)
sec (90° + θ) = 1−sinΘ1−sinΘ
sec (90° + θ) = - csc θ.
and cot (90° + θ) = 1tan(90°+Θ)1tan(90°+Θ)
cot (90° + θ) = 1−cotΘ1−cotΘ
cot (90° + θ) = - tan θ.
Answered by
2
see the attachment
hope this helps you
mark me brainliest
Attachments:
Similar questions
Social Sciences,
6 months ago
English,
1 year ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago