Prove sin(a+b)=sinacosb+cosasinb by vector method
Answers
Answered by
20
Let α⃗ and β⃗ be two unit vectors, and A and B be the angles made by them respectively with the X-axis.
So, α⃗ =cosAiˆ+sinAjˆβ⃗ =cosBiˆ+sinBjˆ
Now, α⃗ .β⃗ =(cosAiˆ+sinAjˆ)(cosBiˆ+sinBjˆ)
⇒αβcos(A−B)=cosAcosB+sinAsinB⇒cos(A−B)=cosAcosB+sinAsinB [∵α=1, β=1] ------------(1)
Putting -B in place of B in (1):-
cos(A−(−B))=cosAcos(−B)+sinAsin(−B)⇒cos(A+B)=cosAcosB−sinAsinB
Similarly,
α⃗ ×β⃗ =(cosAiˆ+sinAjˆ)×(cosBiˆ+sinBjˆ)⇒α⃗ ×β⃗ =cosAsinBkˆ−sinAcosBkˆ
⇒αβsin(A−B)(−kˆ)=(sinAcosB−cosAsinB)(−kˆ)⇒sin(A−B)=sinAcosB−cosAsinB −−−−−−−(2)
Putting B=-B in (2):-
sin(A−(−B))=sinAcos(−B)−cosAsin(−B)⇒sin(A+B)=sinAcosB+cosAsinB
Hence Proved.
Attachments:
Similar questions