Prove sin a + sin2a + sin 3a / cos a + cos 2a +cos 3a = tan 2 a
Answers
Answered by
1
Answer:
ur answer
Step-by-step explanation:
(sinA+sin3A)/(cosA+cos3A)
= (sinA+3sinA-4sin^3A)/(cosA+4cos^3A-3cosA)
= (4sinA-4sin^3A)/(4cos^3A-2cosA)
= [4sinA(1-sin^2A)]/[2cosA(2cos^2A-1)]
= (4sinAcos^2A)/(2cosAcos2A)
= (2sinAcosA)/cos2A
= sin2A/cos2A
= tan2A
plz mark as brainlist answer...,.............
Answered by
0
Answer:
Step-by-step explanation:
sin a + sin2a + sin 3a / cos a + cos 2a +cos 3a
Numerator N = sin2a + sin 3a +sina
=sin2a + 2sin(3a+a)/2cos(3a-a)/2
=sin2a+2sin2a cosa
N=sin2a(1+2cosa)
==================
Denominator D =cosa+cos3a+cos2a
=2cos(3a+a)2 cos(3a-a)/2 +cos 2a
=2cos2acosa + cos2a
D=cos2a(1+2cosa)
Thus result=N/D sin2a(1+2cosa) / cos2a(1+2cosa)
=sin 2a/cos 2a
=tan 2a=RHS
Similar questions