Prove:-
[sin(B+C)] × [sin(B-C)] = sin²(B) - sin²(C)
Answers
Given to prove :-
sin ( B + C ) × sin ( B - C ) = sin²B - sin²C
Formulae to know :-
sin ( B + C ) = sinBcosC + sinC cosB
sin ( B - C ) = sinB cosC - sinC cosB
( a + b ) ( a - b ) = a² - b²
sin²A = 1- cos²A
Solution :-
sin ( B + C ) × sin ( B - C )
= (sinBcosC + sinC cosB) ×( sinB cosC - sinC cosB)
It is in form of( a + b ) ( a - b ) = a² - b²
So,
= (sinBcosC + sinC cosB) ×( sinB cosC - sinC cosB)
= sin²B cos²C - sin²C cos²B
As we are observing RHS The RHS is in interms of sinB , sinC
So, lets convert interms of sinB, sinC
= sin²B cos²C - sin²C cos²B
= sin²B ( 1 - sin²C ) - sin²C ( 1 - sin²B )
= sin²B - sin²B sin²C - sin²C + sin²Bsin²C
Keep like terms together
= sin²B - sin²B sin²C + sin²B sin²C - sin²C
+ sin²Bsin²C - sin²Bsin²C get cancelled
= sin²B - sin²C
So,
sin ( B + C ) × sin ( B - C ) = sin²B - sin²C
Hence proved !
Know more:-
Trigonmetric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonmetric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonmetric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj