Prove sinθ+cosθ/sinθ−cosθ+sinθ−cosθ/sinθ+cosθ=2/sin2θ−cos2θ=2/2sin2θ−1=2sec2θ/tan2 θ−1
Answers
Answered by
0
Answer:
ANSWER
sinθ−cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ−cosθ
=
tan
2
θ−1
2sec
2
θ
L.H.S
=
(sinθ+cosθ)(sinθ−cosθ)
(sinθ+cosθ)
2
+(sinθ−cosθ)
2
=
sin
2
θ−cos
2
θ
sin
2
θ+cos
2
θ+2sinθcosθ+sin
2
θ+cos
2
θ−2sinθcosθ
=
sin
2
θ−cos
2
θ
sin
2
θ+cos
2
θ+sin
2
θ+cos
2
θ
=
sin
2
θ−cos
2
θ
2sin
2
θ+2cos
2
θ
=
(sin
2
θ−cos
2
θ)
2(sin
2
θ+cos
2
θ)
Now, RHS
=
tan
2
θ−1
2sec
2
θ
=
cos
2
θ
sin
2
θ
−1
2
cos
2
θ
1
=
sin
2
θ−cos
2
θ/cos
2
θ
2/cos
2
θ
=
sin
2
θ−cos
2
θ
2
∴ L.H.S=R.H.S
Similar questions
History,
4 months ago
Environmental Sciences,
4 months ago
Math,
4 months ago
Social Sciences,
9 months ago