Math, asked by rvp7122004, 11 months ago

Prove : sin theta/1-cos theta = cosec
theta + cot theta

Answers

Answered by Anonymous
127

Question :

Prove :

 \bf \dfrac{ \sin \theta}{1 -  \cos \theta}  =  \cosec \theta +  \cot \theta

Trignometric Formula's:

sin²A + cos²A = 1

sec²A - tan²A = 1

cosec²A - cot²A = 1

Solution :

 \bf \dfrac{ \sin \theta}{1 -  \cos \theta}  =  \cosec \theta +  \cot \theta

LHS

  = \sf \dfrac{ \sin  \theta}{1 -  \cos \theta}

 =  \sf \dfrac{ \sin \theta}{1 -  \cos \theta}  \times  \dfrac{1 +  \cos \theta}{1 -   \cos \theta}

 =  \dfrac{ \sin \theta(1 +  \cos \theta)}{(1 -  \cos \theta)(1 +  \cos \theta) }

We know that \bf\:(a+b)(a-b)=a{}^{2}-b{}^{2}

 =  \dfrac{ \sin \theta(1 +  \cos \theta)}{1 -  \cos {}^{2} \theta }

Use formula sin²A + cos²A = 1

 =  \dfrac{ \sin \theta(1 +  \cos \theta)}{ \sin { }^{2}  \theta}

 =  \dfrac{  \cancel{\sin \theta}(1 +  \cos \theta)}{ \cancel{ \sin \theta} \times  \sin \theta}

 =  \sf \dfrac{(1 +  \cos \theta)}{ \sin \theta}

 =  \sf \cosec \theta +  \cot \theta

RHS

 =  \sf \cosec \theta +  \cot \theta

⇒LHS = RHS

\huge{\bold{ Hence\:Proved}}

_____________________________

More Trigonometric Formula's:

sin2A = 2 sinA cosA

cos2A = cos²A - sin²A

tan2A = 2 tanA / (1 - tan²A)

Answered by Anonymous
43

{\boxed{\mathsf{\purple{Solution}}}}

{\boxed{\mathsf{To\:Prove}}}

 \implies \frac{ \sin \theta}{1 - \cos \theta} = \cosec \theta + \cot \theta \\

Taking LHS

 \implies \frac{ \sin \theta}{1 - \cos \theta} \\

Now multiplying and dividing the fraction by 1 + cos theta .

 \implies \frac{ \sin \theta}{1 - \cos \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}\\

\frac{ 1 }{ \sin \theta} + \frac{ \cos \theta}{ \sin \theta}

As we know that ( a + b ) × ( a - b ) = - . So ,

 \implies \frac{ \sin \theta + \sin \theta \times \cos \theta}{{1}^{2} - {\cos \theta}^{2}} \\

Now let's have look over some trigonometric identities :-

→ Sin²A + Cos²A = 1

1 - Cos²A = Sin²A .

Now replacing 1 - CoA by Sin²A .

 \implies \frac{ \sin \theta + \sin \theta . \cos \theta}{{\sin \theta}^{2}} \\

 \implies \frac{ \sin \theta}{ {\sin \theta}^{2} } + \frac{\sin \theta . \cos \theta}{ {\sin \theta}^{2} } \\

 \implies \frac{1}{ \sin \theta } + \frac{ \cos \theta}{ \sin \theta} \\

As we know that 1/SinA = Cosec A and

CosA/SinA = Cot A

 \implies \cosec \theta + \cot \theta

Hence proved .

Similar questions