Prove sin x = 2 sinx/2 cosx/2.
Answers
Prove sin x = 2 sinx/2 cosx/2.
sinx can be written in the form of sin (x/2 + x/2)
= sin(x/2 + x/2)
= sinx/2 * cosx/2 + cosx/2* sinx/2
(by using sin(a+b)
= 2 sinx/2 * cosx/2.
sin x can be written as sin ( x/2 + x/2 ) .
We know that sin ( A + B ) = sin A cos B + cos A sin B .
⇒ sin x = sin x/2 × cos x/2 + cos x/2 × sin x/2
⇒ sin x = 2 sin x/2 cos x/2
Hence proved .
NOTE :
Important formulas :
sin ( A + B ) = sin A cos B + cos A sin B
sin ( A - B ) = sin A cos B - cos A sin B
cos ( A + B ) = cos A cos B - sin A sin B
cos ( A - B ) = cos A cos B + sin A sin B
From the above identities we can determine :
sin ( 2 x ) = sin x cos x + cos x sin x
⇒ sin 2 x = 2 sin x cos x
cos ( 2 x ) = cos x × cos x - sin x × sin x
⇒ cos ( 2 x ) = cos²x - sin²x
Another important thing :
In the first quadrant , all ratios are positive .
In the second quadrant , the ratio of sin is positive .
In the third quadrant , the ratio of tan is positive .
In the fourth quadrant the ratio of cos is positive .