Math, asked by udaybaliyan, 1 year ago

prove sin (x-y) cos x-cos (x-y) sin x = -sin y

Answers

Answered by MaheswariS
1

\underline{\textbf{To prove:}}

\mathsf{sin(x-y)\;cos\,x-cos(x-y)sin\,x=-sin\,y}

\underline{\textbf{Solution:}}

\underline{\textbf{Identity used:}}

\boxed{\mathsf{sin(A-B)=\;sin\,A\;cos\,B-cos\,A\;sin\,B}}

\mathsf{Consider,}

\mathsf{sin(x-y)\;cos\,x-cos(x-y)sin\,x}

{\textsf{Using the above identity, we  get}}

\mathsf{=sin(x-y-x)}

\mathsf{=sin(-y)}\;\;\;\mathsf{(\because\;sin(-\theta)=-sin\theta)}

\mathsf{=-sin\,y}

\implies\boxed{\mathsf{sin(x-y)\;cos\,x-cos(x-y)sin\,x=-sin\,y}}

Similar questions