Math, asked by adhityakumar38, 9 months ago

prove sin2 a + 1/1+tan2a =1

Answers

Answered by itsbiswaa
3

Answer:

The answer won't be equal to RHS  

it will be equal if  the question is:

(1 + 1/tan²A)(1 + 1/cot²A) = 1/(sin²A - sin^4.A)

LHS  

= (1 + 1/tan²A)(1 + 1/cot²A)  

= ((tan²A+1)/tan²A)((cot²A+1)/cot²A)  

= (sec²A/tan²A)(csc²A/cot²A)  

= (sec²A.csc²A)/(tan²A.cot²A)  

= sec²A.csc²A  

= 1/(sin²A.cos²A)  

= (1/sin²A)(1/cos²A)  

= (1/sin²A)(1/(1-sin²A))  

= 1/(sin²A - sin^4.A)  

= RHS

Step-by-step explanation:

Answered by devarora999
7

Step-by-step explanation:

Sin²A + 1/1+tan²A

Sin²A + 1/sec²A (1+tan²A = sec²A)

Sin²A + Cos²A (1/secA = cosA)

Sin²A + Cos²A = 1. (By Identity)

HENCE PROVED

MARK AS BRAINLIEST PLEASE :)

Similar questions