Math, asked by doitll, 1 year ago

Prove :

sin2A + sin 2B + sin2C = 4sinAsinBsinC .​

Answers

Answered by oOBADGIRLOo
7

Hmm, Good question :

See the attachment.

Attachments:
Answered by Anonymous
1

<b><body bgcolor="yellow"><font colour="black">

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{{\underline{\underline{\huge\mathcal{...Answer...}}}}}}

\large\mathcal\red{solution}

=>A+B+C=π

Sin2A+Sin2B+Sin2C

=>2sin(A+B)cos(A-B)+Sin2C

=>2sin(π-c)cos(A-B)+2sinCcosC

=>2sinCcos(A-B+2sinCCosC

=>2sinC(cos(A-B)+cosC)

=>2sinC[cos(A-B)+cos(π-(A+B))

=>2sinC[cos(A-B)-cos(A+B)]

=>2sinC(2sinA sinB)

=>4sinAsinBsinC=[proved]

\underline{\large\mathcal\red{hope\: this \: helps \:you......}}

Similar questions