Math, asked by jjamiu658, 2 months ago

Prove sin3A= 3sinA-4sin³A and cos3A= 4cos³A-3cosA​

Answers

Answered by sandy1816
1

 \huge \: sin3A  \\ \\  = sin(2A + A) \\  \\ = sin2AcosA + cos2AsinA \\ \\  = 2sinAcosA.cosA + (1 - 2 {sin}^{2} A)sinA \\  \\ = 2sinA {cos}^{2} A + sinA - 2 {sin}^{3} A \\ \\  = 2sinA(1 -  {sin}^{2} A) + sinA - 2 {sin}^{3} A \\ \\ = 2sinA - 2 {sin}^{3} A + sinA - 2 {sin}^{3} A \\ \\ :\implies 3sinA - 4 {sin}^{3} A \\  \\  \\  \huge \: cos3A \\  \\  = cos(2A + A) \\  \\  = cos2AcosA - sin2AsinA \\  \\  = (2 {cos}^{2} A - 1)cosA - 2sinAcosA.sinA \\  \\  = 2 {cos}^{3} A - cosA - 2 {sin}^{2} AcosA \\  \\  = 2 {cos}^{3} A - cosA - 2(1 -  {cos}^{2} A)cosA \\  \\  = 2 {cos}^{3} A - cosA - 2cosA + 2 {cos}^{3} A \\  \\ : \implies 4 {cos}^{3} A - 3cosA

Similar questions