Math, asked by rahul707528, 1 year ago

prove; sin5x + sinx - 2 sin3x ÷cos5x-cosx= tanx

Answers

Answered by spiderman2019
3

Answer:

Step-by-step explanation:

L.H.S:

sin 5x + sinx - 2 sin 3x / cos 5x - cos x

= [(sin 5x + sin x) - 2 sin 3x] / (cos 5x - cos x)

//now solve the numerator and denominator separately.

Numerator:

using formula sin x + sin y = 2*sin (x+y/2) * cos(x-y/2)

sin 5x + sin x = 2 * sin(5x+x/2) * cos (5x-x/2)

                     = 2 * sin (6x/2) * cos (4x/2)

                     = 2 sin 3x cox 2x

Denominator:

using formula cos x -  cos y = - 2*sin (x+y/2) * sin(x-y/2)

cos 5x - cos x =  - 2 * sin (5x+x/2) * sin (5x-x/2)

                       =  - 2 * sin (6x/2) * sin (4x/2)

                       = - 2 sin 3x sin 2x.

//substitute the values back in main equation:

(sin 5x + sin x) - 2 sin 3x / (cos 5x - cos x)  

= 2 sin 3x cos 2x - 2 sin 3x / ( -2 sin 3x sin 2x)

= 2 sin 3x (cos 2x - 1) / (-2 sin3x sin 2x)

= (cos 2x -1 ) / - 2 sin 2x

= - (cos 2x - 1) / sin 2x

= 1 - cos 2x / sin 2x

//using formula cos 2x = 1 - 2 sin² x and sin 2x = 2 sin x cos x

= 1 - (1 - 2 sin² x) / 2 sin x cos x

= 2 sin²x / 2 sin x cos x  

= sin x / cos x

= Tan x

= R.H.S.

Hence proved.

Similar questions