Math, asked by tridb, 1 year ago

prove sinA/1+cosA=1-cosA/sinA​

Answers

Answered by beautyandbrains
1

Hope this helped

Please mark as brainliest

Attachments:
Answered by TheCommando
10

To prove:

 \dfrac{sinA}{1+cosA} = \dfrac{1-cosA}{sinA}

Proof:

LHS =  \dfrac{sinA}{1+cosA}

Rationalising the denominator

 = \dfrac{sinA}{1-cosA} \times \dfrac{1-cosA}{1-cosA}

 = \dfrac{sinA(1-cosA)}{(1+cosA)(1-cosA)}

 = \dfrac{sinA(1-cosA)}{1-{cos}^{2}A}

= \dfrac {sinA(1-cosA)}{{sin}^{2}A} =\dfrac{1-cosA}{sinA} = RHS

Identities used

  •  ({a}^{2} - {b}^{2}) = (a+b)(a-b)
  •  {sin}^{2}\theta + {cos}^{2}\theta = 1

Hence, proved.

Similar questions