Math, asked by Deewanshii, 1 year ago

Prove
SinA (1+ tanA) + cosA (1+ cotA) = secA + cosecA
I want answer with STEPS....

Answers

Answered by siddhartharao77
8
LHS:

sinA(1+tanA) + cosA(1 + cotA)

sinA(1 +  \frac{sinA}{cosA}) + cosA(1 +  \frac{cosA}{sinA})

sinA +  \frac{sin^2A}{cosA} + cosA +  \frac{cos^2A}{sinA}

sinA +  \frac{cos^2A}{sinA} + cosA +  \frac{sin^2A}{cosA}

 \frac{sin^2A + cos^2A}{sinA} +  \frac{cos^2A + sin^2A}{cosA}

We know that sin^2A + cos^2A = 1

 \frac{1}{sinA} +  \frac{1}{cosA}

cosecA + secA.


LHS = RHS.

Hope this helps!

siddhartharao77: If possible brainliest it. Thanks
Deewanshii: There is no option to mark your answer as brainliest ....
siddhartharao77: One more person Should Answer. Its okk.. Bye
ram424: thanks
siddhartharao77: :-)
Similar questions