Math, asked by rutujapawale05052005, 8 months ago

Prove
sinA/(secA+tanA-1) + cosA/(cosecA + cotA-1) = 1​

Answers

Answered by MaIeficent
11

Step-by-step explanation:

\bf\underline{\underline{\red{To\:Prove:-}}}

  • \rm \dfrac{sinA}{(secA + tanA - 1)}  +  \dfrac{cosA}{(cosecA + cotA - 1)}  = 1

\bf\underline{\underline{\green{Proof:-}}}

Let us prove by simplifying LHS.

\rm LHS = \dfrac{sinA}{(secA + tanA - 1)}  +  \dfrac{cosA}{(cosecA + cotA - 1)}

\rm  =  \dfrac{sinA}{ \dfrac{1}{cosA} +  \dfrac{sinA}{cosA}  - 1}  +  \dfrac{cosA}{ \dfrac{1}{sinA }+ \dfrac{cosA}{sinA}- 1}

\rm  =  \dfrac{sinA}{ \dfrac{1 + sinA - cosA}{cosA} }  +  \dfrac{cosA}{ \dfrac{1 + cosA -sinA }{sinA }}

\rm  =   \dfrac{sinAcosA }{1 + sinA - cosA}  +  \dfrac{cosAsinA}{ {1 + cosA -sinA }}

\rm  =  sinAcosA  \bigg[ \dfrac{1 }{1 + sinA - cosA}  +  \dfrac{1}{ {1 + cosA -sinA }}   \bigg]

\rm  =  sinAcosA  \bigg[ \dfrac{(1 + cosA -sinA) + (1 + sinA - cosA)}{(1 + sinA - cosA)(1 + cosA -sinA)} \bigg]

\rm  =  sinAcosA  \bigg[ \dfrac{1   \:  \: \cancel{+  cosA } \:  \:  \cancel{-sinA}+ 1  \:  \:  \cancel{+ sinA } \:  \:  \cancel{- cosA}}{1 +cosA  -  sinA + sinA cosA -  {sin}^{2}A - cosA - cos^{2} A +sinA cosA}  \bigg]

\rm  =  sinAcosA  \bigg[ \dfrac {2}{1 - sin^{2} A  - cos ^{2} A + 2sinAcosA}   \bigg]

\rm  =  sinAcosA  \bigg[ \dfrac {2}{1 -( sin^{2} A   + cos ^{2} A )+ 2sinAcosA}   \bigg]

\rm  =  sinAcosA  \bigg[ \dfrac {2}{1 -1+ 2sinAcosA}   \bigg] \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \bigg( \because {sin}^{2} A  + cos ^{2} A = 1 \bigg)

\rm  =  \dfrac {2sinAcosA}{2sinAcosA}

\rm  = 1 = RHS

LHS = RHS

Hence Proved

\bf\underline{\underline{\purple{Formulae\: used:-}}}

  • \rm  secA =  \dfrac{1}{cosA}

  • \rm  tanA =  \dfrac{ sinA}{cosA}

  • \rm {sin}^{2} A  + cos ^{2} A = 1
Similar questions