Math, asked by kamdarkundan, 4 months ago

Prove:
sinA/(secA + tanA - 1) + cosA/(cosecA + cotA - 1) = 1​

Answers

Answered by anil00001
1

Answer:

sina/seca+tana-1+cosa/coseca+cota-1

=sina/(1/cosa+sina/cosa-1)+cosa/(1/sina+cosa/sina-1)

=sina/{(1+sina-cosa)/cosa}+cosa/{(1+cosa-sina)/sina}

=sinacosa/(1+sina-cosa)+sinacosa/(1+cosa-sina)

=sinacosa[(1+cosa-sina+1+sina-cosa)/(1+sina-cosa)(1+cosa-sina)]

=2sinacosa/(1+sina-cosa+cosa+sinacosa-cos²a-sina-sin²a+sinacosa)

=2sinacosa/{1+2sinacosa-(sin²a+cos²a)}

=2sinacosa/(1+2sinacosa-1)

=2sinacosa/2sinacosa

=1

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Similar questions