Math, asked by atulranjan1219, 20 days ago

Prove
SinA sin(pi/3-A) sin(pi/3+A) = 1/4 sin3A

Answers

Answered by senboni123456
13

Step-by-step explanation:

We have,

 \sin(A)  \sin \bigg( \frac{\pi}{3} -    A\bigg) \sin \bigg( \frac{\pi}{3}  + A\bigg)   \\

  = \sin(A)   \bigg[   \bigg \{ \sin \bigg( \frac{\pi}{3} \bigg) \cos(A) - \cos \bigg( \frac{\pi}{3} \bigg) \sin(A)\bigg \}  \bigg \{ \sin \bigg( \frac{\pi}{3} \bigg) \cos(A) + \cos \bigg( \frac{\pi}{3} \bigg) \sin(A) \bigg\}\bigg]   \\

  = \sin(A)   \bigg[  \sin ^{2}  \bigg( \frac{\pi}{3} \bigg) \cos^{2} (A) - \cos^{2}  \bigg( \frac{\pi}{3} \bigg) \sin ^{2} (A) \bigg]   \\

  = \sin(A)   \bigg[  \frac{3}{4} \cos^{2} (A) - \frac{1}{4} \sin ^{2} (A) \bigg]   \\

  =  \frac{1}{4} \sin(A)   \bigg[ 3 \cos^{2} (A) -  \sin ^{2} (A) \bigg]   \\

  =  \frac{1}{4} \sin(A)   \bigg[ 3  - 3\sin^{2} (A) -    \sin ^{2} (A) \bigg]   \\

  =  \frac{1}{4} \sin(A)  (3  -    4\sin ^{2} (A))   \\

  =  \frac{1}{4} (3\sin(A)  -    4\sin ^{3} (A))   \\

  =  \frac{1}{4}\sin(3A)    \\

Similar questions