prove( sinA + sinB sinc)/cos B sin C= cos c / sin c
a+b+c=90°
Answers
Answered by
2
Hi bro!!!!
( sinA + sinB sinc)/cos B sin C
To solve this question, you should know transformation formulas..I will mention those formulas where I used in square brackets..
Firstly multiply and divide with 2
(2sinA+2sinBsinC)/2cosBsinC
★[2sinBsinC=cos(B-C)-cos(B+C)]★
★[2cosBsinC=sin(B+C)-sin(B-C)]★
→(2sinA+cos(B-C)-cos(B+C))/(sin(B+C)-sin(B-C))
since B+C =90-A
we get,
=(2sinA+cos(B-C)-cos(90-A))/(sin(90-A)-sin(B-C))
=(2sinA+cos(B-C)-sinA)/(cosA-sin(B-C))
=(sinA+cos(B-C))/(CosA-sin(B-C))
=(sin(90-(B+C))+cos(B-C))/cos(90-(B+C))-sin(B-C))
=(cos(B+c)+cos(B-C))/(sin(B+C)-sin(B-C))
★[cos(B+c)+cos(B-C)=2cosBcosC]★
★[sin(B+C)-sin(B-C)=2cosBsinC]★
=2cosBcosC/2cosBsinC
=cosC/sinC
hence proved..
I hope this will help u ;)
( sinA + sinB sinc)/cos B sin C
To solve this question, you should know transformation formulas..I will mention those formulas where I used in square brackets..
Firstly multiply and divide with 2
(2sinA+2sinBsinC)/2cosBsinC
★[2sinBsinC=cos(B-C)-cos(B+C)]★
★[2cosBsinC=sin(B+C)-sin(B-C)]★
→(2sinA+cos(B-C)-cos(B+C))/(sin(B+C)-sin(B-C))
since B+C =90-A
we get,
=(2sinA+cos(B-C)-cos(90-A))/(sin(90-A)-sin(B-C))
=(2sinA+cos(B-C)-sinA)/(cosA-sin(B-C))
=(sinA+cos(B-C))/(CosA-sin(B-C))
=(sin(90-(B+C))+cos(B-C))/cos(90-(B+C))-sin(B-C))
=(cos(B+c)+cos(B-C))/(sin(B+C)-sin(B-C))
★[cos(B+c)+cos(B-C)=2cosBcosC]★
★[sin(B+C)-sin(B-C)=2cosBsinC]★
=2cosBcosC/2cosBsinC
=cosC/sinC
hence proved..
I hope this will help u ;)
mysticd:
nice work.
Answered by
1
Hi ,
here we use trigonometric transformations .
LHS = ( sinA + sinBsinC )/ cosBsinC
multiply numerator and Denominator with 2
= ( 2sinA + 2sinBsinC)/2cosBsinC
{Given A+B+C = 90
A = 90 - ( B+ C)
sinA = sin[ 90 - ( B+ C)]
sinA = cos ( B+C) }
= [2cos(B+C)+ cos( B-C) - cos(B+C)]/2cosBsinC
{ since 2sinBsinC = cos(B-C) - cos( B+C) }
= [ cos(B+C) +cos(B-C)]/2cosBsinC
= ( 2cosBcosC)/ (2cosBsinC)
{ since cos( B+C) + cos(B-C) = 2cosBcosC }
after cancellation
=cosC/ sinC
= RHS
I hope this helps you.
*****
here we use trigonometric transformations .
LHS = ( sinA + sinBsinC )/ cosBsinC
multiply numerator and Denominator with 2
= ( 2sinA + 2sinBsinC)/2cosBsinC
{Given A+B+C = 90
A = 90 - ( B+ C)
sinA = sin[ 90 - ( B+ C)]
sinA = cos ( B+C) }
= [2cos(B+C)+ cos( B-C) - cos(B+C)]/2cosBsinC
{ since 2sinBsinC = cos(B-C) - cos( B+C) }
= [ cos(B+C) +cos(B-C)]/2cosBsinC
= ( 2cosBcosC)/ (2cosBsinC)
{ since cos( B+C) + cos(B-C) = 2cosBcosC }
after cancellation
=cosC/ sinC
= RHS
I hope this helps you.
*****
Similar questions
India Languages,
8 months ago
Social Sciences,
8 months ago
Biology,
1 year ago
Math,
1 year ago
Environmental Sciences,
1 year ago
Math,
1 year ago