prove square of any positive integer is in the form 5q 5q+1 5q+4 for dome integer q
Answers
Answered by
28
Let x be any integer
Then x = 5m or x = 5m+1 or x = 5m+4 for integer x.
If x = 5m, x2 = (5m)2 = 25m2 = 5(5m2) = 5n (where n = 5m2 )
If x = 5m+1, x2 = (5m+1)2 = 25m2+10m+1 = 5(5m2+2m)+1 = 5n+1 (where n = 5m2+2m )
If x = 5m+4, x2 = (5m+4)2 = 25m2+40m+16 = 5(5m2+8m+3)+1 = 5n+1 (where n = 5m2+8m+3 )
∴in each of three cases x2 iseither of the form 5n or 5n+1 for integer n.
Then x = 5m or x = 5m+1 or x = 5m+4 for integer x.
If x = 5m, x2 = (5m)2 = 25m2 = 5(5m2) = 5n (where n = 5m2 )
If x = 5m+1, x2 = (5m+1)2 = 25m2+10m+1 = 5(5m2+2m)+1 = 5n+1 (where n = 5m2+2m )
If x = 5m+4, x2 = (5m+4)2 = 25m2+40m+16 = 5(5m2+8m+3)+1 = 5n+1 (where n = 5m2+8m+3 )
∴in each of three cases x2 iseither of the form 5n or 5n+1 for integer n.
Answered by
19
hey
here is answer
let a be any positive integer
then
b=5
0≤r<b
0≤r<5
r=0,1,2, 3,4
case 1.
r=0
a=bq+r
5q+0
(5q)^2
25q^2
5(5q^2)
let 5q^2 be m
=5m
case 2.
r=1
a=bq+r
(5q+1)^2
(5q^2)+2*5q*1+1^2
25q^2+10q+1
5(5q^2+2q)+1
let 5q^2+2q be m
= 5m+1
case 3.
r=2
(5q+2)^2
25q^2+20q+4
5(5q^2+4q)+4
let 5q^2+4q be m
= 5m+4
case4.
r=3
(5q+3)^2
25q^2+30q+9
25q^2+30q+5+4
5(5q^2+6q+1)+4
let the 5q^2+6q+1 be m
= 5m+4
case 5.
r=4
(5q+4)^2
25q^2+40q+16
25q^2+40q+15+1
5(5q^2+8q+3)+1
let 5q^2+8q+3 be m
5m+1
note= i have taken m instead of q
from above it is proved.
hope it helps
thanks
here is answer
let a be any positive integer
then
b=5
0≤r<b
0≤r<5
r=0,1,2, 3,4
case 1.
r=0
a=bq+r
5q+0
(5q)^2
25q^2
5(5q^2)
let 5q^2 be m
=5m
case 2.
r=1
a=bq+r
(5q+1)^2
(5q^2)+2*5q*1+1^2
25q^2+10q+1
5(5q^2+2q)+1
let 5q^2+2q be m
= 5m+1
case 3.
r=2
(5q+2)^2
25q^2+20q+4
5(5q^2+4q)+4
let 5q^2+4q be m
= 5m+4
case4.
r=3
(5q+3)^2
25q^2+30q+9
25q^2+30q+5+4
5(5q^2+6q+1)+4
let the 5q^2+6q+1 be m
= 5m+4
case 5.
r=4
(5q+4)^2
25q^2+40q+16
25q^2+40q+15+1
5(5q^2+8q+3)+1
let 5q^2+8q+3 be m
5m+1
note= i have taken m instead of q
from above it is proved.
hope it helps
thanks
Similar questions