Math, asked by Anonymous, 10 months ago

Prove ..Tan^-1(x)+tan^-1(y)=tan^-1(x+y/1-xy)

Don't give spam answer

Answers

Answered by ilina
1

see the attachment

hope it help you

Attachments:
Answered by Anonymous
4

 \bf\  {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1} \frac{x + y}{1 - x}   \\  \\  \tt\ l.h.s \sf\  \implies:  {tan}^{ - 1}x +  {tan}^{ - 1}y \\  \\  \\\sf\ let   \:  \:  \red{{tan}^{ - 1}x  =  \theta   } \\  \\  \tt\  \blue{ {tan}^{ - 1}y =  \phi } \\  \\  \therefore \: tan( \theta +  \phi) =  \frac{(tan \theta + tan \phi)}{1 - tan \theta \: tan \phi} \\  \\  \sf\  \implies:tan( \theta +  \phi) =  \frac{x + y}{1 - xy}  \\  \\  \sf\  \implies:( \theta  + \phi) =  {tan}^{ - 1}( \frac{x + y}{1 - xy}) \\  \\  \boxed{\sf\  \implies: {tan}^{ - 1}x  + {tan}^{ - 1}y =  {tan}^{ - 1}(\frac{x + y}{1 - xy})  }

Similar questions