Math, asked by sagarsinha6324, 9 months ago

Prove tan ^2 x +tan^4 x= sec^4 x -sec^2 x

Answers

Answered by tahseen619
5

{\underline{{\text{To Prove:}}}}

 { \tan }^{2} x +  { \tan}^{4} x =  \sec {}^{4}  -  { \sec}^{2} x

{\underline{{\text{Solution:}}}}

 { \tan }^{4} x +  { \tan }^{2} x \\  \\  =  { \tan}^{2} ({ \tan }^{2} x  + 1)  \\  \\  =  ( { \sec}^{2} x - 1)({ \sec}^{2} x) \\  \\   = \sec {}^{4}x  -  { \sec}^{2} x \\  \\  \therefore \text{L.H.S = R.H.S [Proved]}

{{\boxed{ \text{\blue{Some important trigonometry Rules}}}}}

 cosec\ \theta\ . \sin\ \theta\ =\ 1\\\\tan\ \theta\ .\ cot\ \theta\ =\ 1\\\\sin^2\ \theta\ +\ cos^2\ theta\ =\ 1\\\\cosec^2\ \theta\ -\ cot^2\ theta\ =\ 1\\\\sec^2\ \theta\ -\ tan^2\ \theta\ =\ 1

Similar questions