Prove :tan 240° +tan 30°
------------------------ =2
tan 240° -tan 30°
Answers
To prove --->
tan 240° + tan 30°
------------------------------ = 2
tan 240° - tan 30°
Proof ---> We know that in third quadrant tan is positive i e
tan ( 180° + θ ) = tanθ
So tan240° = tan ( 180° + 60° )
angle of 240° lies in third quadrant so
= tan 60°
tan 240° = √3
Now,
tan 240° - tan 30° = √3 - 1 / √3
Taking √3 as LCM we get
= (√3 √3 - 1 )/ √3
= 3 - 1 / √3
= 2 / √3
Now
tan 240° + tan 30° = √3 + 1 / √3
= (√3 √3 + 1) / √3
= ( 3 + 1 )/ √3
= 4 / √3
Now
LHS
=( tan240°+tan30°) / (tan240° - tan 30°)
Putting ( tan 240° + tan 30° ) = 4 / √3
and ( tan 240° - tan 30° ) = 2 / √3
= ( 4 / √3 ) / ( 2 / √3 )
= 4 √3 / 2 √3
√3 is cancel out from numerator and denominator we get
= 4 / 2
= 2 = RHS