Math, asked by jeyaraman4701, 1 year ago

Prove tan*2A +cot*2A+2=sec*A.cosec*2A

Answers

Answered by Pitymys
0

Here  LHS=\tan ^2 A+\cot^2 A . Now use the formula,

 x^4+y^4=(x^2+y^2)^2-2x^2y^2

 \sin^2 A+\cos ^2 A=1

 LHS=\tan ^2 A+\cot^2 A+2\\<br />LHS=\frac{\sin^2 A}{\cos^2 A}+\frac{\cos^2 A}{\sin^2 A}+2\\<br />LHS=\frac{\sin^4 A +\cos^4 A}{\sin^2 A\cos^2 A}+2\\<br />LHS=\frac{(\sin^2 A +\cos^2 A)^2-2\sin^2 A \cos^2 A}{\sin^2 A\cos^2 A}+2\\<br />LHS=\frac{(1)^2-2\sin^2 A \cos^2 A}{\sin^2 A\cos^2 A}+2

 LHS=\frac{1}{\sin^2 A\cos^2 A}-2+2\\<br />LHS=\sec^2 A\csc^2 A=RHS

Proof is complete.

Similar questions