Math, asked by anish55, 1 year ago

Prove : tan^2A/(secA-1)^2=1+cosA/1-cosA

Answers

Answered by thenishantkumar
161
ye raha is question ka solution.....
Attachments:
Answered by mysticd
55

Answer:

\frac{tan^{2}A}{(secA-1)^{2}}=\frac{1+cosA}{1-cosA}

Step-by-step explanation:

LHS=\frac{tan^{2}A}{(secA-1)^{2}}

=\frac{(sec^{2}A-1)}{(secA-1)^{2}}\\=\frac{(secA+1)(secA-1)}{(secA-1)(secA-1)}\\=\frac{(secA+1)}{(secA-1)}\\=\frac{\frac{1}{cosA}+1}{\frac{1}{cosA}-1}\\=\frac{\frac{(1+cosA)}{cosA}}{\frac{(1-cosA)}{cosA}}\\=\frac{1+cosA}{1-cosA}\\=RHS

\frac{tan^{2}A}{(secA-1)^{2}}=\frac{1+cosA}{1-cosA}

•••♪

Similar questions