Prove: tan(62)=2tan(34)+tan(28)
Answers
Answered by
104
Answer:
Step-by-step explanation:
/* Since, tanAcotA = 1*/
Therefore,
•••♪
Answered by
19
Answer:
tan 62° = 2 tan 34° + tan 28°
step by step explanation:
=> tan 62° = tan (34° + 28°)
=> tan 62° = (tan 34° + tan 28°) / (1 - tan 34° × tan 28°) [since, tan (A+B) = (tanA + tanB) / (1 - tanA × tanB)]
=> tan 62° × (1 - tan34° × tan28°) = tan 34° + tan 28°
=> tan 62° - tan 34° × tan 28° × tan 62° = tan 34° + tan 28°
=> tan 62° - tan 34° × tan 28° × tan (90° - 28°) = tan 34° + tan 28°
=> tan 62° - tan 34° × tan 28° × cot 28° = tan 34° + tan 28°
=> tan 62° - tan 34° × 1 = tan 34° + tan 28° [ since, tanA × cotA = 1]
=> tan 62° = tan 34° + tan 34° + tan 28°
=> tan 62° = 2 tan 34° + tan 28°
Hence, it is prove.
Hope it will help you
Similar questions
Math,
8 months ago
Math,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Hindi,
1 year ago
Social Sciences,
1 year ago
Hindi,
1 year ago