Prove : tan A/( 1-cot A) + cot A / (1-tan A) = sec A.cosec A +1
It's urgent
..plzz
Answers
To Prove
tanA/(1 - cotA) + cotA/(1 - tanA) = secAcosecA + 1
Proof
Taking LHS,
We can write tanA as secA/cosecA and cotA as cosecA/secA. Hence the expression becomes
Taking out minus sign from denominator of second term, we get
Now multiply with secA in both numerator and denominator on first term and with cosecA in both numerator and denominator on the second to get equal denominators.
Split using a³ - b³ = (a - b)(a² + b² + ab)
Cancel out (secA - cosecA)
Now,
sec²A + cosec²A = 1/cos²A + 1/sin²A
→ sec²A + cosec²A = (sin²A + cos²A)/cos²Asin²A
→ sec²A + cosec²A = 1/sin²Acos²A
→ sec²A + cosec²A = sec²cosec²A
Put this value in expression and it becomes
Take out secAcosecA common in numerator
Cancel out secAcosecA
=
Hence proved.
Question :--- Prove that tan A/( 1-cot A) + cot A / (1-tan A) = sec A.cosec A +1
Formula used :---
- CotA = 1/TanA
- (a³ - b³) = (a-b)(a²+b²+ab)
- 1 + sec²A = tan²A
- SecA = 1/cosA
- cosecA = 1/sinA
- TanA = sinA/cosA
Solution :-----
Solving LHS we get,
tanA/(1-cotA) +cotA/(1-tanA)
Putting CotA = 1/tanA we get,
→ tanA/(1–1/tanA) +cotA/(1-tanA)
Taking LCM and Taking Denominator on Multiply we get,
→ tan²A/(tanA-1) +cotA/(1-tanA)
Taking (-1) common From First part now,
→ (-tan²A)/(1-tanA) +cotA/(1-tanA)
→ (-tan²A+cotA)/(1-tanA)
again putting cotA = 1/tanA now,
→ (-tan²A+1/tanA)/(1-tanA)
Taking LCM again
→ (-tan³A+1)/tanA(1-tanA)
→ (1-tan³A)/tanA(1-tanA)
using (a³ - b³) = (a-b)(a²+b²+ab) now,
→ (1-tanA)(1+tanA+tan²A)/tanA(1-tanA)
(1-tanA) will be cancel From both sides ,
→ (1+tanA+tan²A)/tanA
→ [(1+tan²A)+tanA]/tanA
Using (1+tan²A) = sec²A now,
→ (sec²A+tanA)/tanA
→ sec²A/tanA + (tanA/tanA)
Putting secA = 1/cosA now,
→ 1/cos²AtanA + 1
Putting TanA = sinA/cosA now,
→ cosA/cos²AsinA + 1
→ 1/cosAsinA + 1
using 1/cosA = secA and 1/sinA = cosecA now,