Math, asked by adaterutu, 5 months ago

Prove: (tan A)/((1 + tan^2 A) ^ 2) + (cos A)/((1 + cot^2 A) ^ 2) = sinA * cosA​

Answers

Answered by tanvirsinghtanvir408
2

Answer:

your answer is here friends..

Attachments:

adaterutu: it's incorrect
Answered by Anonymous
1

lhs \\  \\ \frac{tan \alpha }{ {(1 +  {tan}^{2} \alpha ) }^{2} }  +  \frac{cos \alpha }{ {(1 + cot { \alpha }^{2}) }^{2} }  \\  \\  =  \frac{tan \alpha }{ {(1 + ( \frac{sin  ^{2} \alpha }{ \cos ^{2}  \alpha  }) )}^{2} }  + \frac{cos \alpha }{ {(1 + ( \frac{cos  ^{2} \alpha }{ \sin ^{2}  \alpha  }) )}^{2} }  \\  \\  = \frac{tan \alpha  }{ {  \frac{ ({cos}^{2}  \alpha  +  {sin}^{2}  \alpha )}{ {cos}^{4} \alpha  } }^{2} }  +  \frac{ \cos \alpha  }{  \frac{( {sin}^{2} \alpha  +  {cos}^{2}  \alpha ) ^{2}  }{ {sin}^{4} \alpha  } } \\  \\  =  \frac{tan \alpha   \:  \: {cos}^{4} \alpha  }{ {(1)}^{2} }  +  \frac{ \cos \alpha  \:  \:  {sin}^{4}  \alpha }{ {(1)}^{2} }  \\  \\  =  \tan \alpha  \:  \:  {cos}^{4}  \alpha  +  \cos \alpha  \:  \:  {sin}^{4}  \alpha  \\  \\  =  \frac{sin \alpha }{cos \alpha }  \:  \:  {cos}^{4}  \alpha  +  \cos \alpha  \:  \:  {sin}^{4}  \alpha  \\  \\  = \sin \alpha  \:  \:  {cos}^{3}  \alpha  +  \cos \alpha  \:  \:  {sin}^{4}  \alpha  \\  \\   take \: common \\  \\  = sin \alpha  \:  \: cos \alpha ( {cos}^{2}  \alpha  +  {sin}^{2}  \alpha ) \\  \\  = sin \alpha  \:  \: cos \alpha ( 1 )  \\  \\ = sin \alpha  \:  \: cos \alpha

Hence proved...

mark as Brainlist

keep smiling

always smiling______ :-)

Similar questions