Math, asked by srijan675, 10 months ago

prove:
tan A+ cot A = sec A cosec A

Answers

Answered by priyamehta011296
3

Answer:

sin A/cos A + cosA/sinA

= (sin^2 A + cos^2A)/ sinA cos A

= 1/sinA cos A

sec A cosec A

Answered by BrainlyConqueror0901
101

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \red{\underline \bold{To \: Prove : }} \\  \tt:  \implies tan \: A+ cot \: A = sec \:A \: cosec \: A

• According to given question :

 \tt:  \implies tan \: A+ cot \: A= sec \: A \: cosec \: A \\  \\  \bold{Solving \: L.H.S } \\ \tt:  \implies tan \: A+ cot \: A\\  \\ \tt \circ \: tan \: A=  \frac{sin \: A}{cos \: A}   \\ \\  \tt:  \implies  \frac{sin \: A}{cos \: A}  + cot \: A\\  \\ \tt \circ \: cot \:A =  \frac{cos \: A}{sin \: A }   \\  \\ \tt:  \implies  \frac{sin \: A}{cos \: A}  +  \frac{cos \: A}{sin \: A}  \\  \\ \tt:  \implies   \frac{sin \: A \times sin \: A + cos \: A  \times cos \: A}{cos \: A \times sin \: A}  \\  \\ \tt:  \implies  \frac{ {sin}^{2} \: A+  {cos}^{2} \: A }{cos \:  \times sin \:A }  \\  \\  \tt \circ \:  {sin }^{2} \: A +  {cos}^{2}  \: A = 1 \\  \\  \tt:  \implies  \frac{1}{cos \: A\times sin \: A}  \\  \\ \tt \circ \: cos \: A=  \frac{1}{sec \: A}   \\  \\  \tt \circ \: sin \: A=  \frac{1}{cosec \: A}  \\  \\ \tt:  \implies  \frac{1}{ \frac{1}{sec \: A \times cosec \: A} }  \\  \\  \green{\tt:  \implies sec \: A \: cosec \: A} \\  \\   \green{\tt \therefore L.H.S = R.H.S} \\  \\    \:  \: \red{\huge{ \bold{Proved }}}

Similar questions