Prove - tan theta + 2tan2theta + 4tan4theta + 8cot8theta = cot theta
Answers
Answered by
92
To prove - tan Ф + 2 tan 2Ф + 4 tan 4Ф + 8 cot 8Ф = cot Ф
Simply bring all the elements on L.H.S to R.H.S and equate it to zero.
Refer the solution given below -
cot Ф - tan Ф - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
We know that ,
cot Ф - tan Ф = 2 cot 2Ф
Applying the important deduction,
= (cot Ф - tan Ф) - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
= 2 cot 2Ф - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
= 2( cot 2Ф - tan 2Ф) - 4 tan 4Ф - 8 cot 8Ф
= 2(2 cot 4Ф) - 4 tan 4Ф - 8 cot 8Ф
= 4 cot 4Ф - 4 tan 4Ф - 8 cot 8Ф
= 4(cot 4Ф - tan 4Ф) - 8 cot 8Ф
= 4(2 cot 8Ф) - 8 cot 8Ф
= 8 cot 8Ф - 8 cot 8Ф
= 0 = R.H.S
Hope This Helps You!
Simply bring all the elements on L.H.S to R.H.S and equate it to zero.
Refer the solution given below -
cot Ф - tan Ф - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
We know that ,
cot Ф - tan Ф = 2 cot 2Ф
Applying the important deduction,
= (cot Ф - tan Ф) - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
= 2 cot 2Ф - 2 tan 2Ф - 4 tan 4Ф - 8 cot 8Ф
= 2( cot 2Ф - tan 2Ф) - 4 tan 4Ф - 8 cot 8Ф
= 2(2 cot 4Ф) - 4 tan 4Ф - 8 cot 8Ф
= 4 cot 4Ф - 4 tan 4Ф - 8 cot 8Ф
= 4(cot 4Ф - tan 4Ф) - 8 cot 8Ф
= 4(2 cot 8Ф) - 8 cot 8Ф
= 8 cot 8Ф - 8 cot 8Ф
= 0 = R.H.S
Hope This Helps You!
Answered by
23
Answer:
Step-by-step explanation:
This question need basic formula which l wrote in image.....
And need lots of patience...
It might help u
Attachments:
Similar questions