prove tan theta + sec theta-1/
tan theta - sec theta +1 = 1+sin
theta/ cos theta = sec theta +
tan theta
Answers
Answered by
5
Answer:
Hey Mate,
We have to prove LHS = RHS
LHS = ( tan\theta+sec\theta-1 ) / ( tan\theta-sec\theta+1 )
RHS = (sin\theta+1) / cos\theta
Lets Start from LHS
LHS = ( tan\theta+sec\theta-1 ) / (tan\theta-sec\theta+1 )
= ( tan\theta+sec\theta-(sec^{2}\theta-tan^2\theta )) / ( tan\theta-sec\theta+1 )
= (tan\theta+sec\theta-[(sec\theta+tan\theta)(sec\theta-tan\theta)])/(tan\theta-sec\theta+1 )
= (tan\theta+sec\theta[tan\theta-sec\theta+1]) / (tan\theta-sec\theta+1 )
= tan\theta+sec\theta
= [sin\theta/cos\theta] + [1/cos\theta]
= [(sin\theta+1) /cos\theta] = RHS
Hence Proved,
LHS=RHS
Hey Mate,
We have to prove LHS = RHS
LHS = ( tan\theta+sec\theta-1 ) / ( tan\theta-sec\theta+1 )
RHS = (sin\theta+1) / cos\theta
Lets Start from LHS
LHS = ( tan\theta+sec\theta-1 ) / (tan\theta-sec\theta+1 )
= ( tan\theta+sec\theta-(sec^{2}\theta-tan^2\theta )) / ( tan\theta-sec\theta+1 )
= (tan\theta+sec\theta-[(sec\theta+tan\theta)(sec\theta-tan\theta)])/(tan\theta-sec\theta+1 )
= (tan\theta+sec\theta[tan\theta-sec\theta+1]) / (tan\theta-sec\theta+1 )
= tan\theta+sec\theta
= [sin\theta/cos\theta] + [1/cos\theta]
= [(sin\theta+1) /cos\theta] = RHS
Hence Proved,
LHS=RHS
Answered by
3
we have to prove that LHS=RHS
theta=a
then
(tan a+sec a-1)/(tan a-sec a+1)
(tan a+sec a-(sec^2a-tan^2a))/(tan a-sec a+1)
(tan a+sec a-(sec a+tan a) (seca-tana))/(tan a-sec a+1)
(tan a+sec a-(sec a+tan a)(seca-tana) /(tan a-seca+1)
(tan a+ seca) (1-(seca-tana))/(tan a-sec a+1)
(tan a+ seca)
-------------------
(sin a/cos a) +(1/cos a)
here Lcm is cos a
(sin a+1)/cos a
---------------
Similar questions