prove tan theta+sin theta/tan theta-sin theta =sec theta+1/sec theta-1
Answers
Answered by
228
Hi ,
Here I used A instead of theta,
LHS = ( tanA + sinA )/(tanA - sinA )
Multiply numerator and denominator
with cotA
=[CotA(tanA+sinA )]/[cotA(tanA-sinA)]
= (CotAtanA+cotAsinA)/(cotAtanA-
cotAsinA )
= [ 1 + ( cosA/sinA)sinA]/[ 1-
(cosA/sinA)sinA ]
[ Since cotA tanA = 1 ]
= ( 1 + cosA ) / ( 1 - cos A )
= ( 1 + 1/ secA ) ( 1 - 1/ secA )
=[ ( SecA + 1 ) /secA ]/[(secA-1)/secA]
= ( SecA + 1 ) / ( secA - 1 )
= RHS
I hope this helps you.
:)
Here I used A instead of theta,
LHS = ( tanA + sinA )/(tanA - sinA )
Multiply numerator and denominator
with cotA
=[CotA(tanA+sinA )]/[cotA(tanA-sinA)]
= (CotAtanA+cotAsinA)/(cotAtanA-
cotAsinA )
= [ 1 + ( cosA/sinA)sinA]/[ 1-
(cosA/sinA)sinA ]
[ Since cotA tanA = 1 ]
= ( 1 + cosA ) / ( 1 - cos A )
= ( 1 + 1/ secA ) ( 1 - 1/ secA )
=[ ( SecA + 1 ) /secA ]/[(secA-1)/secA]
= ( SecA + 1 ) / ( secA - 1 )
= RHS
I hope this helps you.
:)
Answered by
4
Answer:
HS = ( tanA + sinA )/(tanA - sinA )
Multiply numerator and denominator
with cotA
=[CotA(tanA+sinA )]/[cotA(tanA-sinA)]
= (CotAtanA+cotAsinA)/(cotAtanA-
cotAsinA )
= [ 1 + ( cosA/sinA)sinA]/[ 1-
(cosA/sinA)sinA ]
[ Since cotA tanA = 1 ]
= ( 1 + cosA ) / ( 1 - cos A )
= ( 1 + 1/ secA ) ( 1 - 1/ secA )
=[ ( SecA + 1 ) /secA ]/[(secA-1)/secA]
= ( SecA + 1 ) / ( secA - 1 )
= RHS
I hope this helps you.
:)
Step-by-step explanation:
Similar questions