Math, asked by dask69984, 1 year ago

Prove-- tan thita ÷ 1-cot thita+cot thita÷ 1-tan thita = 1+sec thita×cosec thita

Answers

Answered by tuka81
4

GIVEN:- tanθ/(1 - cotθ) + cotθ/(1 - tanθ)

=> tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)

=> tan²θ/(tanθ - 1) - 1/tanθ(tanθ - 1)

=> 1/(tanθ - 1) { tan²θ - 1/tanθ }

=> 1/(tanθ - 1) { (tan³θ - 1)/tanθ)

[as, a³ - b³ = (a - b)(a² + b² + ab)

=> {(tanθ - 1)(tan²θ + 1 + tanθ)}/{(tanθ - 1)(tanθ)}

=> tanθ + cotθ + 1

=> sinθ/cosθ + cosθ/sinθ + 1

=> (sin²θ + cos²θ)/sinθ . cosθ + 1

=> 1/sinθ . cosθ + 1

=> cosecθ . secθ + 1

I HOPE IT'S HELP YOU

please mark me as brainliest

Similar questions