Prove-- tan thita ÷ 1-cot thita+cot thita÷ 1-tan thita = 1+sec thita×cosec thita
Answers
Answered by
4
GIVEN:- tanθ/(1 - cotθ) + cotθ/(1 - tanθ)
=> tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)
=> tan²θ/(tanθ - 1) - 1/tanθ(tanθ - 1)
=> 1/(tanθ - 1) { tan²θ - 1/tanθ }
=> 1/(tanθ - 1) { (tan³θ - 1)/tanθ)
[as, a³ - b³ = (a - b)(a² + b² + ab)
=> {(tanθ - 1)(tan²θ + 1 + tanθ)}/{(tanθ - 1)(tanθ)}
=> tanθ + cotθ + 1
=> sinθ/cosθ + cosθ/sinθ + 1
=> (sin²θ + cos²θ)/sinθ . cosθ + 1
=> 1/sinθ . cosθ + 1
=> cosecθ . secθ + 1
I HOPE IT'S HELP YOU
please mark me as brainliest
Similar questions