Math, asked by faalogojo, 9 months ago

prove tan x-cot x/sin x(cos x)=sec^2x- csc^2x

Answers

Answered by ksonakshi70
4

Answer:

 \frac{ \tan(x)  -  \cot(x) }{ \sin(x)  \cos(x) }  =  {  \sec(x)  }^{2}  -  \csc(x)  {}^{2}  \\ lhs \:  =  \frac{ \tan(x)  -  \cot(x) }{ \sin(x) \cos(x)  }  \\  \:  \:  =  \frac{ \tan(x) }{ \sin(x)  \cos(x) }  -  \frac{ \cot(x) }{ \sin(x)  \cos(x) }  \\  \:  \:  =  \frac{1}{ { \cos(x) }^{2} }  -  \frac{1}{ { \sin(x) }^{2} }  \\  \:  \:  \:  =  { \sec(x) }^{2}  -  { \csc(x) }^{2}  \\  \:  \:  \:  = rhs \:  \\ proved

Similar questions