Math, asked by kamalroseaulakh19, 8 months ago

prove tan2 0 - sin2 0=tan2 0 sin2 0​

Answers

Answered by Anonymous
66

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\boxed{\fcolorbox{purple}{pink}{Question}}

Gɪᴠᴇɴ :  { \tan }^{2}θ -  { \sin}^{2}θ=  { \tan }^{2}θ  \:   { \sin}^{2}θ

Tᴏ  \: Pʀᴏᴠᴇ : \:  LHS=RHS

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\mathcal\pink{\boxed{\boxed{Answer}}}

LHS =  { \tan }^{2} θ -  { \sin }^{2} θ

  = { (\frac{ \sinθ }{ \cosθ } )}^{2}  -   { \sin θ  }^{2}

 =  {( \frac{ \sinθ }{ \cosθ } )}^{2}  -  \frac{  { \ {sinθ}^{2}  { \cosθ }^{2}  }  }{ { \cosθ}^{2}  }

 =   \frac{{ \sin }^{2} θ(1 -  { \cos }^{2} θ)}{ { \cosθ }^{2} }

 = \frac{  { \sin }^{2} θ}{ { \cos }^{2}θ}  \times (1 -  { \cos }^{2} θ)

 =  { \tan }^{2} θ \times  { \sin }^{2} θ

 = RHS

Hᴇɴᴄᴇ \:  Pʀᴏᴠᴇᴅ

Hσρє ıт нєℓρѕ уσυ!

Similar questions