prove
tan2A= (sec2A + 1)(tanA)
Answers
Answered by
1
Step-by-step explanation:
tan2A=(sec2A+1)(tanA)
R.H.S=(sec2A+1)(tanA)
=(1/cos2A+1)(sinA/cosA)
=(cos2A+1/cos2A)×(sinA/cosA)
=(2cos^2A/cos2A)
=2sinA.cosA/cos2A
=sin2A/cos2A
=tan2A
Similar questions