prove tan40 tan45 tan 50 =1
Answers
Answered by
0
Answer:
Step-by-step explanation:
tan50=tan(40+10)
we have ,tan(a+b)=(tanA+tanB) (1-tanA tanB)
=tan(40+10)=(tan40+tan10)(1-tan40 tan10)
=tan50=(tan40+tan10)(1-tan40 tan10)
=tan50(1-tan40 tan10)=tan40+tan10.
=tan(1-tan40 tan10)=tan40+tan10.
=tan50-tan50 tan40 tan10=tan40+tan10
=and tan50 =tan(90-40)=cot40
=tan50-cot40 tan40 tan10 =tan40+tan10
=tan50-tan10=tan40+tan10
because cot40=1/tan 40
PLS MARK AS BRAINLIEST...
Answered by
0
Step-by-step explanation:
we can write tan 50 as cot 40
(90-tan) theta =cot theta
tan 40 will cancel cot 40
Since tan 45=1
LHS=RHS
Similar questions