Math, asked by sagacioux, 1 month ago

Prove :-
Tan48° Tan23° Tan42° Tan67° = 1​

Answers

Answered by XxpagalbacchaxX
3

Answer:

we   \: know  \\ that  \: tan \: (90−θ) \: = \: cotθ  \:  \\ and   \\ \: cos(90−θ)=sinθ \\ </p><p></p><p></p><p>(i) tan \: (90−42) \: otan \\  \\ (90−67) \: otan \: 42 \: otan \: 67 \:  \\ o</p><p></p><p>=cot \: 42 \: o \: cot \: 67 \: \\  o \: tan \: 42 \: o \: tan \: 67 \: o \\  \\ </p><p></p><p>= \: (1) \: (1) \: =1 \\ </p><p></p><p></p><p>(ii\: cos(96−52) \\ o \:cos(90−38) \: o−sin \: 38 \: o \: sin \: 52 \: o \\ </p><p></p><p>=sin \: 52 \: osin \: 38 \: o \: −sin \: 38 \: osin \: 52 \: o</p><p> \\ </p><p>=0 \\  \\ </p><p></p><p>Hence \:  Proved.</p><p></p><p>

Answered by TheMilkyWeigh
1

Solution:

=Tan48° Tan23° Tan42° Tan67° = 1

=Cot(90° - 48°) Cot(90° - 23°) Tan42° Tan67°

=Cot42° Cot67° Tan42° Tan67°

 \frac{1}{tan42°}  \times  \frac{1}{tan67°} \times tan42 ° \times tan67°

= 1 = RHS

Hence, proved!

Similar questions