Math, asked by aroojac, 1 year ago

Prove (tanA+2)(2tanA+1)=5tanA+2sec^2 A

Answers

Answered by MaheswariS
10

Answer:

\bf(tanA+2)(2tanA+1)=2\,sec^2A+5\,tanA}

Step-by-step explanation:

\text{consider,}

(tanA+2)(2tanA+1)

\text{By term by term multiplication we get}

=2\,tan^2A+tanA+4\,tanA+2

=2\,tan^2A+2+5\,tanA

=2(tan^2A+1)+5\,tanA

\text{Using,}

\boxed{\bf\,sec^2\theta-tan^2\theta=1\implies\,sec^2\theta=1+tan^2\theta}

\text{we get}

=2\,sec^2A+5\,tanA

\implies\boxed{\bf(tanA+2)(2tanA+1)=2\,sec^2A+5\,tanA}

Similar questions