prove: TanA + Cot2A =Cosec2A
Answers
Answered by
24
cot 2A + tan A
= cos 2A/sin 2A + sin A/cos A
= (cos 2A cos A + sin 2A sin A) / sin 2A cos A
Using the compound angle formulae,
we know that cos (2A - A ) = cos 2A cos A + sin 2A sin A...
therefore,
= cos (2A - A) / sin 2A cos A
= cos A / sin 2A cos A
= 1/ sin 2A
= cosec 2A ( proven)
= cos 2A/sin 2A + sin A/cos A
= (cos 2A cos A + sin 2A sin A) / sin 2A cos A
Using the compound angle formulae,
we know that cos (2A - A ) = cos 2A cos A + sin 2A sin A...
therefore,
= cos (2A - A) / sin 2A cos A
= cos A / sin 2A cos A
= 1/ sin 2A
= cosec 2A ( proven)
Answered by
7
Answer:
This is the perfect process/method and answer of your question. Hope it will help you. All the best for your future .
Please mark my answer as BRAINLIEST
Attachments:
Similar questions