Prove: TanA+SecA = root3
Answers
Step-by-step explanation:
Hello,
it's a trig equation
secA + tanA = √3
let's rewrite secA and tanA in terms of sinA, cosA:
(1 /cosA) + (sinA /cosA) = √3
let's move √3 to the left side:
(1 /cosA) + (sinA /cosA) - √3 = 0
let cosA be the common denominator at the left side:
[1 + sinA - (√3)cosA] /cosA = 0
let's equate the numerator to zero:
1 + sinA - (√3)cosA = 0
let's group terms as:
1 + [sinA - (√3)cosA] = 0
let's multiply and divide the expression in brackets by 2:
1 + 2 {[(sinA)/2] - [(√3)cosA]/2} } = 0
1 + 2 {sinA (1/2) - [(√3)/2] cosA} = 0
given that 1/2 = cos(60°) and (√3)/2 = sin(60°), we can rewrite the equation as:
1 + 2 [sinA cos(60°) - sin(60°) cosA] = 0
let's apply, to both products in brackets, the product-to-sum formula
sin α cos β = [sin(α + β) + sin(α - β)] /2:
1 + 2 { {[sin(A + 60°) + sin(A - 60°)] /2} - {[sin(60° + A) + sin(60° - A)] /2} } = 0
1 + 2 { {sin(A + 60°) + sin(A - 60°) - [sin(A + 60°) + sin(60° - A)]} /2} = 0
1 + 2 {[sin(A + 60°) + sin(A - 60°) - sin(A + 60°) - sin(60° - A)] /2} = 0
(applying the trig identity sin(- α) = sin α)
1 + 2 {sin(A - 60°) - [- sin(- 60° + A)]} /2} = 0
1 + 2 {[sin(A - 60°) + sin(A - 60°)] /2} = 0
1 + 2 {[2sin(A - 60°)] /2} = 0
simplifying to:
1 + 2sin(A - 60°) = 0
then:
2sin(A - 60°) = - 1
sin(A - 60°) = - 1/2
hence:
I) (recalling that sin(- 30°) = - 1/2):
A - 60° = - 30°
A = 60° - 30° = 30°
II) (recalling that sin(180° + 30°) = - 1/2)
A - 60° = 180° + 30°
A = 60° + 180° + 30° = 180° + 90° = 270° (nevertheless this value is outside the interval (0, 90°) )
in conclusion, the only solution for 0 < A < 90° is:
A = 30°
I hope it's helpful