prove tantheta + sectheta - 1/ tantheta - sectheta + 1 = 1+ sintheta/ costheta
Answers
Answer:
proved
Step-by-step explanation:
Given
prove tan theta + sec theta - 1/ tan theta - sec theta + 1 = 1+ sin theta/ cos theta
ANSWER
Now we have
Tan theta + sec theta – 1 / 1 + tan theta + sec theta
Multiply both numerator and denominator by 1 + tan theta + sec theta
Now writing in the form a^2 – b^2 we get
(Tan theta + sec theta)^2 – 1^2 / (1 + tan theta)^2 – sec^2 theta
Tan^2 theta + sec^2 theta + 2 tan theta sec theta – 1 / 1 + 2 tan theta + tan^2 theta – sec^2 theta
We know that 1 + tan^2 theta = sec^2 theta
So tan^2 theta + 1 + tan^2 theta + 2 tan theta sec theta– 1 / 2 tan theta
We get tan theta + sec theta
Sin theta / cos theta + 1 / cos theta
1 + sin theta / cos theta (proved)