Math, asked by yashashianay, 1 month ago

prove: tanthita + 1/tanthita = secthita cosecthita​

Answers

Answered by sandy1816
2

tan \theta +  \frac{1}{tan \theta}  \\  =  \frac{ {tan}^{2}  \theta + 1}{tan \theta}  \\  =  \frac{ {sec}^{2} \theta }{tan \theta}  \\  = sec \theta \frac{sec \theta}{tan \theta}  \\  = sec \theta \: cosec \theta

Answered by Anonymous
3

To prove :-

{ \dashrightarrow\bigg( \tan \theta +  \dfrac{1}{ \tan \theta} \bigg) =  \sec \theta. cosec \theta}

‎ ‎ ‎

Solution :-

{ \dashrightarrow\bigg( \tan \theta +  \dfrac{1}{ \tan \theta} \bigg) =  \sec \theta. cosec \theta}

{ \dashrightarrow\bigg(  \dfrac{ \tan^{2} \theta + 1}{ \tan \theta} \bigg) =  \sec \theta. cosec \theta}

» Apply formula tan²θ + 1 = sec²θ

{ \dashrightarrow\bigg(  \dfrac{ \sec^{2} \theta }{ \tan \theta} \bigg) =  \sec \theta. cosec \theta}

» Apply formula tanθ = secθ/cosecθ

 \rm{ \dashrightarrow\Bigg(  \dfrac{ \sec^{2} \theta }{ \frac{ \sec \theta}{ cosec \theta}} \Bigg) =  \sec \theta. cosec \theta}

 \rm{ \dashrightarrow\Bigg(  \dfrac{ \sec^{2} \theta. cosec \theta }{ \sec \theta} \Bigg) =  \sec \theta. cosec \theta}

 \rm{ \dashrightarrow\bigg(  \dfrac{ \ \cancel{sec^{2} \theta.} cosec \theta }{  \cancel{\sec  \theta}} \bigg) =  \sec \theta. cosec \theta}

{ \dashrightarrow  \boxed { \red{ \rm\sec \theta. cosec \theta =  \sec \theta. cosec \theta}}}

» LHS = RHS

Hence proved

Similar questions