prove tanx + cotx=under root sec^2x+cosec^2x
Answers
Answered by
7
RHS= under root (1+tan^2x)+(1+cot^2x)
=under root 2+tan^2x+cot^2x
since cotx*tanx=1
thus it is similar to (a+b)^2
therefore----------under root (tanx+cotx)^2
=tanx +cotx
=LHS
Hope this helps!
=under root 2+tan^2x+cot^2x
since cotx*tanx=1
thus it is similar to (a+b)^2
therefore----------under root (tanx+cotx)^2
=tanx +cotx
=LHS
Hope this helps!
hitarthgodhani:
plz mark me as brainliest!
Answered by
6
Hey dear !!!
From given RHS
√sec²²x -cosec²x
•°• sec²x = 1 + tan²x
And , cosec²x = 1 + cot²x
√1+tan²x + 1 + cot²x
√tan²x + cot²x
√tan²x +cot²x + 2×tanx×cotx
{•°• tanx×cotx = 1}
Hence it is in the form of
(a+ b)² = a² + b² + 2ab
Hence ,
√(tanx + cotx)²
= tanx + cotx LHS prooved
******************************
Hope it helps you !!!
@Rajukumar111
From given RHS
√sec²²x -cosec²x
•°• sec²x = 1 + tan²x
And , cosec²x = 1 + cot²x
√1+tan²x + 1 + cot²x
√tan²x + cot²x
√tan²x +cot²x + 2×tanx×cotx
{•°• tanx×cotx = 1}
Hence it is in the form of
(a+ b)² = a² + b² + 2ab
Hence ,
√(tanx + cotx)²
= tanx + cotx LHS prooved
******************************
Hope it helps you !!!
@Rajukumar111
Similar questions