prove :
![1+(1-tanA/1-cotA )^2= sec^2A 1+(1-tanA/1-cotA )^2= sec^2A](https://tex.z-dn.net/?f=1%2B%281-tanA%2F1-cotA++%29%5E2%3D+sec%5E2A)
Answers
Answered by
1
Answer:
Step-by-step explanation:
1+(1-tanA/1-cotA)^2 = 1+(1 -tanA/1 -1 / tanA)^2
= 1+[(1-tanA)/tanA-1/tanA)]^2
=1+[(1-tanA)tanA/tanA-1]^2
cancelling 1-tanA and tanA-1
=1+(-tanA)^2
=1+Tan^2A
=sec^2A
=R.H.S
Similar questions