Math, asked by monjyotiboro, 18 days ago

Prove: ⭐✨

1+sinx = {sin(x/2) +cos(x/2)}^2

Attachments:

Answers

Answered by SparklingBoy
3

 \red {\sf   {\large Identities \:  \:  Used }}

1)  \:  \:  \:  \:  \:  \sf { \sin }^{2}  \alpha  +  {cos}^{2}   \alpha  = 1 \\  \\   \sf 2) \:  \:  \:  \:  \: sin2 \alpha  = 2 \sin \alpha  \cos\alpha

Let's Move Towards The Question Now

 \red {\sf   {\large To  \:  \: Prove }}

 \sf1 + sin \: x =  {(sin {} \dfrac{x}{2} +  {cos} \dfrac{x}{2}  ) }  {}^{2}

RHS

   \sf{(sin {}^{} \dfrac{x}{2} +  {cos}  \dfrac{x}{2}  ) {}^{2}  }  {}\\  \\  =  \sf  {sin}^{2}  \dfrac{x}{2}  +  {cos}^{2}  \dfrac{x}{2}  + 2sin \frac{x}{2} cos \dfrac{x}{2}  \\  \\  \sf = 1  + sin \: x = LHS

Hence Proved

Answered by Anonymous
1

Write sinx=2sinx/2cosx/2

Write sinx=2sinx/2cosx/2 And write 1 = sin2x/2+cos2x/2

Write sinx=2sinx/2cosx/2 And write 1 = sin2x/2+cos2x/2 So LHS becomes:

Write sinx=2sinx/2cosx/2 And write 1 = sin2x/2+cos2x/2 So LHS becomes:sin2x/2+cos2x/2+2sinx/2cosx/2 = [math](sin x/2 + cos x/2)^2]/math] = RHS === proved.

Similar questions